

ALEXYS AS 100 Autosampler

Service manual

CE

DECLARATION OF CONFORMITY

The manufacturer hereby declares that the product

ALEXYS AS 100 auto sampler type 18	1
------------------------------------	---

To which this declaration relates, is in conformity with the following directives:

EEC directives 89/392, 91/368 and 93/44 (machine safety) and EEC directives 73/23 and 93/68 (low voltage safety):

Safety requirements for laboratory equipment EN61010-1 (Class I, Installation cat. II, Pollution degree 2)

EEC directives 89/336 and 92/31 (EMC requirements):

EMC requirements for electrical equipment for	EN 61326-1
measurement, control and laboratory use	
Emission- Industrial, Scientific and Medical	EN 55011 (Class B)
(ISM) equipment	
Harmonic current emissions	EN 61000-3-2
Voltage fluctuations and flicker	EN 61000-3-3

Attention

Use manufacturer-supplied cable(s) only to connect all I/O's with other devices. Thoroughly connect the shielding to common. Manufacturer will not accept any liability for damage, direct or indirect, caused by connecting this instrument to devices, which do not meet relevant safety standards.

June 28, 2004

Important notice

This AS 100 Service Manual is designed for use by personnel who have had training and are experienced in servicing this type of equipment. Because of the possible hazards to an inexperienced person in servicing this product, as well as the risk of damage to the instrument, servicing should be performed by qualified service personnel only.

We make no representations or warranties, either express of implied, that the information contained in this AS 100 Service Manual is complete or accurate. It is understood that the purchaser must assume all risk in the use of this Manual for the purpose of performing service upon the instrument it covers. Components of this instrument which are considered userserviceable are discussed in detail in the instrument's Users Manual.

Antec Leyden strongly recommends to use only original Antec Leyden spare parts, otherwise we do not guarantee any specification or liabilities.

Safety instructions

The following pages summarise cautionary information basic to the safe operation of this instrument. These safety hazards are indexed by page number in order of their appearance in the manual. However, it is strongly recommended that the user should read the entire manual carefully before attempting to service the instrument. In addition, be sure to heed all, **DANGER, WARNING, CAUTION, ATTENTION** and **NOTE** signs and pictograms which are specifically defined as follows:

DANGER:

The "DANGER sign" denotes a hazard. It calls attention to a procedure, practice or the like, which, if not correctly done or adhered to, could results in injury or loss of life.

Do not proceed beyond a "DANGER sign" until the indicated conditions are fully understood and met.

CAUTION:

CAUTION

The "CAUTION sign" denotes a hazard. It calls attention to a procedure, practice or the like, which, if not correctly done or adhered to, could result in damage or destruction of parts or all of the equipment.

Do not proceed beyond a "CAUTION sign" until the indicated conditions are fully understood and met.

The "A

ATTENTION:

The "ATTENTION sign" denotes relevant information.

Read this information first, it might be helpful or necessary before continuing.

ATTENTION:

Observe precautions for handling Electrostatic discharge sensitive devices.

Electrical hazards

The following safety practices are intended to insure the safe operation of the equipment.

- 1. Removal of some panels exposes potentially dangerous voltages. Disconnect the instrument from all power sources before removing protective panels.
- 2. Replace blown fuses with size and rating stipulated on the fuse panel or holder and in the manual where listed.
- 3. Replace or repair faulty or frayed insulation on power cords.
- 4. Check actual line voltage to confirm it is the value for which this instrument is wired. Be sure power cords are plugged into correct voltage sources.

General precautions

- 1. Perform periodic leak checks on supply lines.
- 2. Do not allow flammable and/or toxic solvents to accumulate. Follow a regulated, approved waste disposal program. Never dispose of such products through the municipal sewage system.

Mechanical safety

Good mechanical safety practices are more important than ever, now that microprocessors are taking control of mechanical devices. Yet, the area of mechanical safety is often overlooked during instrument servicing. We may be able to change this situation if you heed the following safety tips:

- 1. Remember to keep clothing and fingers away from rotating components. It is easy to slip, lose a tie, or get cut while working near one of these devices.
- 2. Unless it is absolutely essential, never run mechanical components without the protective guards in place.
- Always use the tools specifically recommended for the job. This not only reduces the chances of injury, it minimises damage to the instrument.
- 4. Although not always possible, it is recommended that mechanical devices should be adjusted or calibrated with the power OFF. This is especially important if you are working with a microprocessor-controlled instrument, which can start running without notice or user-intervention.
- 5. After the mechanical repairs have been completed, always check that all mounting hardware and safety shields are in place and secure. By doing so you will not only ensure safe operation of the instrument, but may reduce call-backs.

As you can appreciate, all it takes is good common sense, plus good safety techniques that are basic and easy to remember. With this in mind, you should have no trouble servicing mechanical devices safely.

Electrical safety

It is shocking but true! Many people service instruments without giving much thought to electrical safety. Unfortunately, this can be a dangerous mistake. As electrical/electronic devices are used more widely in modern instrumentation, it means that you may be exposed to more and more potential shock hazards.

It pays to take a few precautions before and during servicing to avoid injury from electrical shock. Here are a few safety tips that can help keep you on the job without a sudden vacation:

- 1 Avoid standing on damp floors! People have been shocked simply by standing on a damp floor and working on live equipment.
- 2 Be sure to disconnect the power cord before working on any high voltage circuitry! As power switches disappear from new equipment, this precaution is very easy to overlook.
- 3 Read and heed ALL caution labels! The are posted for your safety.
- 4 Take care of your test equipment. Be sure to use the right probes for the right job. Measuring high voltage, for example, requires a well insulated high-voltage probe. Damaged probes and cables are dangerous and should not be used. Also, be cautious around test equipment like an oscilloscope. The oscilloscope case may become live if you connect the cable ground to a live circuit. Avoid this dangerous situation at all times!

The basic tips regarding good electrical safety practices are easy to remember. Combined with good common sense, they should keep you on the job for a long time to come.

Tools

The list below gives an overview of the tools which may be required to perform service:

Service tools

Philips screwdriver #1 Philips screwdriver #2 (long shaft) Flat head screwdriver Hex key 1.5mm Hex key 1.6mm Hex key 2 mm Hex key 2 mm Hex key 2.5mm Hex key 3mm Hex key 9/64" (Injection valve) Wrench 5.5 mm Ring wrench 7mm (with open inlet) Ring wrench 13mm (Syringe valve nut) Wrench ¼" + 5/15" Adjustable wrench 0-20mm

Solvents / Tubing

Uracil solution 50 ppm in water PEEK tubing L=10 M OD: 1.6mm ID:0.25mm (1/16"x0.01")

Test equipment

Multimeter UV detector 254nm (specs: noise 9x10⁻⁵ AU, Linearity 0-1.3AU) AC 100 & ALEXYS data system / recorder

Service keyboard

The AS 100 only has a serial RS232 interface and the AS 100 ALEXYS software driver does not give access to the autosampler service mode.

A service keyboard (p/n 181.0580) is absolutely necessary to enter the AS 100 service mode.

Installation

- 1. Remove AS 100 top cover
- 2. Connect keyboard to connector J10 on the AS 100 main board, located at the right side of the electronics compartment. See figure below.
- 3. Power up the AS 100. The display on the service keyboard will start-up with AS 100 main menu.

Copyright ©2004. All rights reserved. Contents of this publication may not be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from the copyright of the owner.

The information contained in this document is subject to change without notice. Manufacturer and its affiliated companies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Table of contents

Attention i Important notice ii Safety instructions iii Electrical hazards iv General precautions iv Mechanical safety v Electrical safety vi Tools vii

Programming Chart 12

Connections 15

Relay outputs 16 TTL outputs 17 TTL inputs 19 Serial interface connections – Multi-Link communication 20 Serial interface connections – Cable configuration 21 Signal descriptions 22

Service Mode and adjustments 23

Cooling PCB 25 Syringe PCB 27 Syringe PCB - Home position syringe 30 Needle PCB - Needle adjustments 35 Needle adjustments – Horizontal 35 Needle adjustments – Vertical home position 36 Valve PCB 38 Valve PCB - Removing the injection valve assembly 39 Tray PCB 41 Tray PCB – Tray sensors 42 I/O PCB 44 Serial port test 47 Tray calibration 47 Reset LOG counters 48

Disassembling 49

Injection Valve Mechanism 49 Tray Drive and Cooling 49 Electronics 49 Dispenser 50 Needle unit 51

Firmware replacement 53

Trouble shooting guide 54

Error codes 54 Error codes – Injection valve and ISS valves unit 54 Error codes – Syringe dispenser unit 55 Error codes – Needle unit 56 Error codes – Tray unit 58 Error codes – Vials 59 Error codes – Electronics 60 Analytical 61

Needle volumes 64

List of accessories 65

Syringe speed 68

Cooling option 71

Temperature sensor 72 Spare parts cooling option 72

Performance check 73

Settings & adjustments 73 Functions 75 Performance 75

Analytical performance test 76

Performance test – Analytical system 76 Performance test – Rel. standard deviation (RSD%) 76 Performance test – Reproducability 77 Example chromatogram reproducibility test 78 Performance test – Carry-over test 79

Index 81

CHAPTER 1

Programming Chart

(with template & user prog.)

(with template & user prog.)

Note^{*}: These parameters depend on the contents of the methods used and/or the System Settings of the AS 100.

Note ^{**}: Optional Soft-function keys.

PRIORITY: Only available when user-program and mix method have been disabled in the System Settings.

CHAPTER 2

Connections

Fig. 1. Rear side of the AS 100.

- 1 Fuses and voltage selector
- 2 Mains input
- 3 Mains switch
- 4 I/O connectors
- 5 CE-mark
- 6 Communication interface connector
- 7 UL label
- 8 Type label and serial number
- 9 Fan (only when tray cooling is installed)
- 10 Ventilation holes

Relay outputs

Pin	Description	Pin	Description
1	OUT 1 – Normally open	9	Spare
2	OUT 1 – Common	10	Alarm output – Normally open
3	OUT 1 – Normally closed	11	Alarm output – Common
4	OUT 2 – Normally open	12	Alarm output – Normally closed
5	OUT 2 – Common	13	24 V DC
6	OUT 2 – Normally closed	14	Power Ground
7	Spare	15	Power Ground
8	Spare	16	Spare

Connector P1 OUTPUTS (Relays)

Vmax = 28 V DC / V AC, Imax = 0.25 A

Connector P4	MARKERS	(Relays	s)	
--------------	---------	---------	----	--

Pin	Description	Pin	Description
1	Inject Marker – Normally open	9	Labelled well marker – Normally closed
2	Inject Marker – Common	10	Stop I/O – Normally open
3	Inject Marker – Normally closed	11	Stop I.O – Common
4	Well Marker – Normally open	12	Stop I/O – Normally closed
5	Well Marker – Common	13	24 V DC
6	Well Marker – Normally closed	14	Power Ground
7	Labelled well marker – Normally open	15	Power Ground
8	Labelled well marker – Common	16	

Vmax = 28 V DC / V AC, Imax = 0.25 A

The Relay inject marker contacts are closed/ open during (default) 1 second at the moment the Injection valve switches from LOAD to INJECT.

Pin	Description	Pin	Description
1	AUX 1 – Normally open	9	AUX 3 – Normally closed
2	AUX 1 – Common	10	AUX 4 – Normally open
3	AUX 1 – Normally closed	11	AUX 4 – Common
4	AUX 2 – Normally open	12	AUX 4 – Normally closed
5	AUX 2 – Common	13	24 V DC
6	AUX 2 – Normally closed	14	Power Ground
7	AUX 3 – Normally open	15	Power Ground
8	AUX 3 – Common	16	

Vmax = 28 V DC / V AC, Imax = 0.25 A

Maximum current for 24 V DC supply is 0.5 A total.

TTL outputs

Connector P2 VIAL NO. & MARKERS

Pin	Description	Pin	Description
1	Inject Marker	9	D4 (BCD or HEX) (10 or 16)
2	Well Marker	10	D5 (BCD or HEX) (20 or 32)
3	Labelled well marker	11	D6 (BCD or HEX) (40 or 64)
4	Stop I/O	12	D7 (BCD or HEX) (80 or 128)
5	D0 (BCD or HEX) (1)	13	Signal Ground
6	D1 (BCD or HEX) (2)	14	Signal Ground
7	D2 (BCD or HEX) (4)	15	Signal Ground
8	D3 (BCD or HEX) (8)	16	

Vmax = 5.5 V, logical 1: > 3.5 V, logical 0: < 1.0 V DC output source/ sink current ± 20 mA

BCD	D7	D6	D5	D4	D3	D2	D1	D0	Vial Number
	(80)	(40)	(20)	(10)	(8)	(4)	(2)	(1)	
Output	1	0	0	1	0	1	1	0	96
Output	0	1	0	1	1	0	0	1	59
Output	0	0	1	0	1	0	0	1	29
Output	0	0	0	1	0	0	0	0	10

Examples of BCD VIAL NUMBER OUTPUT

The maximum vial number output in BCD code is 99, therefore select in case of micro-vials the HEX-code.

Examples of HEX VIAL NUMBER OUTPUT

HEX	D7	D6	D5	D4	D3	D2	D1	D0	Vial Number
	(128)	(64)	(32)	(16)	(8)	(4)	(2)	(1)	
Output	1	0	0	1	0	1	1	0	150
Output	0	1	1	0	0	0	0	0	96
Output	0	1	0	1	0	1	0	1	85
Output	0	0	1	1	1	0	1	1	59

Connector P3 TIMED OUTPUTS; 4 bit time base code output.

Pin		Pin	Description	
1	Time base 0 (HEX 1)	6	Signal Ground	
2	Time base 1 (HEX 2)	7	Signal Ground	
3	Time base 2 (HEX 4)	8	Signal Ground	
4	Time base 3 (HEX 8)	9	Signal Ground	
5	Not used			

Vmax = 5.5 V, logical 1: > 3.5 V DC, logical 0: < 1.0 VDC output source/ sink current ± 20 mA.

The TTL Inject Marker is an active high contact. The level is high during (default) 1 second at the moment the Injection valve switch from LOAD to INJECT.

TTL inputs

Connector P6 INPUTS (TTL)

The P6 input connector is an active high or active low TTL input, user definable in the System Settings.

The Next Injection input and the Next injection input can be used when the AS 100 works in Remote Control.

The Freeze input and Stop I/O can be used to control the AS 100 by other devices.

The four inputs (Input 1 - 4) can only be used in the user program, e.g. to control the sequence of the steps in this method.

Pin	Description	Pin	Description
1	Next injection input	9	Signal Ground
2	Next well input	10	Signal Ground
3	Freeze input	11	Signal Ground
4	Stop I/O	12	Signal Ground
5	INPUT 1	13	Signal Ground
6	INPUT 2	14	Signal Ground
7	INPUT 3	15	Signal Ground
8	INPUT 4	16	

Connector P6 INPUTS (TTL)

Serial interface connections – Multi-Link communication

The AS 100 is standard equipped with a Multi-Link male-female 9 pins Dconnector for serial communication. This interface allows you to connect your AS 100 with other instruments and the PC. With the use of the Device Identifier, the address of the AS 100 can be selected from 20 to 29. To change the Device Identifier, press: SYSTEM, MENU and <COMM.>

To get access to the serial mode press MENU and <SERIAL>.

Set the dipswitch S1 and S2 as follows:

The pin connections of the 9 pins D-connectors are as follows:

Port OUT (9 pins D-connector male)		Port IN ((9 pins D-connector female)
Pin	Description	Pin	Description
2	Rx-2	2	Tx-1
3	Tx-2	3	Rx-1
4	Valve_out	4	Valve_in
5	Gnd	5	Gnd
6	AS_ready_in	6	AS_ready_out
7	Downstream_sync_2	7	Downstream_sync_1
8	Upstream_sync_2	8	Upstream_sync_1

For testing the hardware of the serial port, see chapter 3.7 of this manual.

Serial interface connections – Cable configuration

The interface cable configurations are as follows:

Multi-Link PCB (181.0502)

Cable: 09 wires 1:1 pinning Foil shielded Sub-D 09M Sub-D 09F

9 pins sub-D Female	9 pins sub-D Male
(PC)	(Instrument)
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Shield	Shield

Signal descriptions

NEXT INJECTION INPUT:

From Ready screen: A NEXT INJECTION INPUT given while the AS 100 is in the Ready mode, will execute the programmed series as if it was started with the START/STOP key. This means: the AS 100 will not wait for a second NEXT INJECTION INPUT.

In Remote control: The NEXT INJECTION INPUT given in the remote control mode, start the programmed injection. After finishing this injection sequence the AS 100 will wait for a new NEXT INJECTION INPUT, or NEXT VIAL INPUT.

NEXT VIAL INPUT:

When a NEXT VIAL INPUT is given; the AS 100 will perform the next injection always from the next vial, even if not all the programmed injections are carried out in that vial.

FREEZE INPUT:

The AS 100 will freeze the analysis time for the time this input is active. If the FREEZE INPUT is activated while the analysis time is not running, the AS 100 will perform all programmed pre-injection sample handling (Mix method, and loading part of the injection method). But the AS 100 will wait with injecting the sample until the FREEZE INPUT is no longer active.

STOP I/O:

From Ready screen: The stop I/O output is low when the AS 100 is in the READY screen. The output is high during processing, and when it is forced low the AS 100 stops immediately and return to the READY screen.

In Remote control: In case of the AS 100 is in remote control mode, the run of the AS 100 remains in remote control and can not be re-started with a NEXT INJECTION INPUT.

INJECT MARKER:

TTL: The inject marker is an active high contact. This level is high during (default) 1 second at the moment of the injection

Relay: The inject marker contacts are closed/ open during (default) 1 second at the moment of the injection.

CHAPTER 3

Service Mode and adjustments

The software of the AS 100 is provided with a service mode. In the service mode, it is possible to control all the outputs, mechanical movements and to require information from all the inputs. Since the service mode is only to be used by a qualified service engineer, it is protected by a service code. To enter the service mode for the AS 100 it is necessary to connect a service keyboard (p/n 181.0580). To enter the service mode from the "READY" screen, press **[MENU]** followed by the SOFTKEY **<SERVICE>**. After this it is necessary to enter the service code **10 11 63**.

The service mode is set up in such a way that each function of the unit has its own page(s). To enter a required function press the corresponding softkey.

To enter the service mode proceed as follows:

• Power up the unit

Press: [MENU]

16:49 TUESDAY FEBRUARY 02-99 [MENU] READY (1.83)

<SERIAL>

<SERVICE>

Press: <SERVICE>

ENTER SERVICE CODE, THEN PRESS ENTER

Press: 10 11 63 <Enter>

Below is an example of one of the screens in the service mode. Each sub assembly is controlled by its own driver board, which is connected via slots on the CPU board. Starting with slot number 0 you can step with the "MENU" button on the keypad through all the slots.

If during initialization an Error occurs press "Start/Stop" to continue.

After slot 7 there are 3 more main functions (which are only available in the service mode). For a description, refer to the end of this chapter. Although there is no fixed position for the different boards, the software detects the position and the function of the board. The factory installation is as follows:

SLOT	PCB-ID	FUNCTION
0	\$60	COOLING (only if option is installed)
1	\$FF	EMPTY
2	\$11	SYRINGE
3	\$FF	EMPTY
4	\$20	NEEDLE
5	\$30	VALVE
5	\$32	VALVE + ISS VALVES + SSV (if option is installed)
6	\$10	TRAY
7	\$40	EXT.I/O

The new PCB is multi-functional for all the different Valve options as well as for the SSV valve. The PCB-ID depends on the dipswitch settings.

INSTALLED OPTIONS	1	2	3	4	PCB-ID
INJ. VALVE	0	0	0	0	\$30
INJ. VALVE + ISS A	0	1	0	0	\$32
INJ. VALVE + ISS B	0	0	1	0	\$34
INJ. VALVE + ISS A + ISS B	0	1	1	0	\$36
INJ. VALVE + SSV	0	0	0	1	\$38
INJ. VALVE + SSV + ISS A	0	1	0	1	\$3A
INJ. VALVE + SSV + ISS B	0	0	1	1	\$3C
INJ. VALVE + SSV + ISS A + ISS B	0	1	1	1	\$3E

* 0 = OFF 1 = ON

Cooling PCB

SERVICE MODE	SLOT:0	PAGE 1 of 3
PCB-ID:\$60	COOLING	SETPOINT: 4°C
ACTUAL: 4°C \$3 OFF	11COUNTS	332mV POWER: -72%

26 Service manual AS 100, edition 1

SETPOINT ACTUAL \$11COUNTS	Can be changed with numeric keypad. Current temp of cooling ring Output from the AD Converter. (depends on the actual temperature)
332mV	Output from cooling ring sensor. (depends on the actual temperature)
POWER	Power in % on which the peltiers are working. (-) = cooling $(+)$ = heating
<u>SOFTKEY</u>	To switch the peltiers on or off

SERVICE M	IODE	SLOT:	0	PAGE	2	of	3
PCB-ID:\$6	0	COOLI	NG	PSU	F2	AN	
OFF	SL	WC	FAST				

PSU FAN Fan motor on the rear panel of the unit. This fan is only present if the cool-option is installed.

<u>SOFTKEYS</u>	OFF	Turns the fan off.
	SLOW	Will start the fan at half speed.
	FAST	Will start the fan at high speed

SERVICE MO	DE SLOT:0	PAGE	3	0£	3
PCB-ID:\$60	COOLING	FAN	1-	-2	
OFF	SLOW	FAST			

PSU FAN	The 2 fan peltiers.	s used to cool the heat sinks below the
<u>SOFTKEYS</u>	OFF SLOW FAST	Turns the fan off. Will start the fan at half speed. Will start the fan at high speed.

The SOFTKEYS on page 2 and 3 are overruled if the cooling is turned on (page 1 of 3).

Syringe PCB

```
SERVICE MODE SLOT:2 PAGE 1 of 4
PCB-ID:$11 SYRINGE
SENSORS HOME:1 ROTATION:1
HOME
```

<u>SENSORS</u>	HOME:X	Indicates the status of the syringe home sensor. This sensor is used to check if syringe is in the home position. X= 1 if sensor vane inside sensor X= 0 if sensor vane outside sensor Indicates the status of the rotation sensor. This sensor is used to check if the syringe spindle turns without ob- structions. Placed at the top end of the spindle.			
	ROTATION:X	Indicates the status of the rotation sensor. This sensor is used to check if the syringe spindle turns without ob- structions. Placed at the top end of the spindle. X= 1 if rotation vane is inside sensor X= 0 if slot of rotation vane inside sensor			
<u>SOFTKEYS</u>	HOME	Resets the syringe to its home posi- tion.			

SERVICE MODE	SLOT:2	PZ	AGE 2 of 4		
PCB-ID:\$11	SYRINGE	I	LOAD:XXX%		
FF	EQ START:	XXX Hz	END:XXXXHz		
START					

<u>PROGRAMMABLE</u> <u>PARAMETERS:</u>		LOAD:XXX%	Enter value how far the syringe to be moved down. (100 % is the full syringe length)
		FREQ. START	Enter start frequency for the step- per motor (for example. 300 Hz)
SOFTK	<u>EYS</u>	END	Enter end freq. (max. speed) for the stepper motor. (for example. 5000 Hz). The maximum speed is 8355 Hz (speed 9 in mix & userprog) Will move the syringe spindle down
			for the value entered in the load parameter
	SERVICE M PCB-ID:\$1 START	ODE SLOT:2 1 SYRINGE FREQ START:	PAGE 3 of 4 UNLOAD:XXX% XXXHz END:XXXXHz
<u>PROGRAMMABLE</u> <u>PARAMETERS:</u>		UNLOAD:X%	Enter value how far the syringe to be moved up. (100 % is the full syringe length)
		FREQ. START	Enter start frequency for the stepper. (for example. 300 Hz)
		END	Enter end frequency for the stepper motor. (for example. 5000 Hz)
<u>SOFTKEYS</u>		START	Will move the syringe spindle up for the amount entered in the unload parameter

SERVICE	MODE	SLOT:2		PAGE	4	of	4
PCB-ID:	\$11	SYRINGE		VAL	7E.		
SENSORS	LEFT:2	K RIGHT:	ĸ				
WASH	NI	EEDLE	WASTE				

<u>SENSORS</u>	LEFT:X	Indicates the status of the left syringe valve sensor X= 1 if rotation vane is inside sensor. (light beam interrupted) X= 0 if slot of rotation vane is inside sensor
	RIGHT:X	Indicates the status of the left syringe valve:
		X= 1 if rotation vane is inside sensor. (light beam interrupted)
		X= 0 if slot of rotation vane is inside sensor

SOFTKEYS	SENSORS	Left	Right
WASH	Sets the syringe valve	0	1
	in waste position.		
NEEDLE	Sets the syringe valve	0	0
	in needle position.		
WASTE	Sets the syringe valve	1	0
	in waste position.		

Syringe PCB - Home position syringe

To set the home position from the syringe proceed as follows:

- Check if the syringe is installed correctly. Completely tightened in the luerlock.
- Turn the spindle counter-clockwise (use the geared belt as grip) until the syringe is completely up.
- Turn the spindle clockwise for approximately 1 $\frac{1}{2}$ stroke.
- Set service mode screen on page 1.
- Loosen the 2 screws that secure the home vane sensor.
- Slide the home vane upwards until the home sensor indication on the LCD is 1.
- Press the Softkey "HOME" and check if the distance between the tip from the plunger and the end of the syringe is approximately 2 mm.

Needle PCB

	SERV PCB- SENS H	ICE MODE ID:\$20 ORS HOM OME	SLOT NEEI NE:X V DOWN	F:4 DLE VIAL:X	PAGE 1 of 4 VERTICAL FLEX-PCB	: X
<u>SENSOR</u>	<u>RS</u>	HOME:X		Indicat	es the status of the	e vertical
(vertical				home s	sensor. This senso	r is used to
movemen	nt)			check i	if the needle arm is	s completely
				up.		
				X= 1	if sensor vane is i	nside sensor
				X= 0	if sensor vane is o	outside sensor
		VIAL:X		Indicat	es the status of the	e vial sensor.
				X= 1	if vane is inside s	ensor
				X= 0	if vane is outside	sensor
		FLEX-PC	В	To indi installe	cate if Flex-PCB is ed.	correctly
				X= 1	If Flex-PCB is not	correctly
					connected to the	Needle PCB.
				X= 0	If Flex-PCB is cor	rectly
					connected to the	Needle PCB.
<u>SOFTKE</u>	YS	HOME		Will mo upper (ove the needle arm position.	to its most
		DOWN		Will mo	ove the needle arm n.	n to its lowest

•

It is possible to move the needle arm down on every random position. Make sure the needle arm is not obstructed during the down action. Otherwise you might destroy needles or other parts.

To allow the needle arm to move down, the following conditionings are necessary:

- Horizontal needle position sensor should be 0
 - Tray stop sensor should be 0

In case the position sensor is 1 the AS 100 will return an Error 35. If the tray stop sensor is 1 the AS 100 will return an Error 37.

SERVICE MC	DE SLOT:4	PAGE	2 of 4
PCB-ID:\$20	NEEDLE	HORI	ZONTAL
SENSORS H	OME:X POSI	TION:X FI	EX-PCB:X
HOME	NEXT	PREVIOUS	

SENSORS	HOME:X	Indicat	tes the status of the horizontal	
(horizontal		home sensor, This sensor is used to		
needle		check if the needle train is completely at		
movement)		its hon	ne position.	
			sensor	
		X= 1	If optical sensor is interrupted by	
			butt strap.	
		X= 0	If optical sensor is not	
			interrupted by butt strap.	
	POSITION:X	Indicat	tes the status of position sensor.	
		This se	ensor is used to stop the needle	
		train a	t an correct position.	
		X= 1	If optical sensor is interrupted by butt strap	
		X= 0	If optical sensor is not inter-	
			rupted by butt strap.	
<u>SOFTKEYS</u>	HOME	Will m	ove the needle train to its home	
		positio	n.	
	NEXT	Will m	ove the needle train to the next	
		horizo	ntal position.	
	PREVIOUS	Will m	ove the needle train to its previous	
		positio	n.	
Before the ne	odlo arm might	ho mov	ad harizontal the following con-	

Before the needle arm might be moved horizontal the following conditions are necessary:

Vertical home sensor should be 1 (Page 1 of 4)
Sample needle home sensor should be 1 (Page 3 of 4)

In case the Vertical home sensor is 0 the AS 100 will return an Error 34. If the sample needle home sensor is 0 the AS 100 will return an Error 42.

SERVICE PCB-ID:\$	MODE SL 20 NE	OT:4 EDLE	PAGE 3 of 4 SAMPLE NDL
SENSORS	HOME:X	CYCLE:X	FLEX-PCB:X
HOME	DOW	111	

SENSORS (sample needle)	HOME:X	Indicates the status of the sample needle home sensor. This sensor is used to check if the sample needle is completely at its home position. (up) X= 1 If sample needle is up. X= 0 If sample needle is not completely up.
	CYCLE:X	Indicates the status of the cycle sensor. This sensor is used to count the rotation from the sample needle spindle. X= 1 If sensor is interrupted. X= 0 If sensor is not interrupted.
<u>SOFTKEYS</u>	HOME DOWN	Will move the sample needle to its home position. Will move the sample needle to its lowest position.

SERVICE MODE	SLOT:4	PAGE 4 of 4
FCD-1D.920	NEEDEE	FLEX-PCB:X
ON	OFF	

<u>SENSORS</u>	There are no sensors used for the compressor.			
<u>SOFTKEYS</u>	ON	Turns the compressor ON.		
	OFF	Turns the compressor OFF.		
Needle PCB - Needle adjustments

The needle unit is adjustable in the horizontal and vertical movement.

Needle adjustments – Horizontal

The horizontal movement is controlled by a code strip, which is a part of the needle unit.

Before making an adjustment on the horizontal movement, make sure the correct position of the wash position block. (See stop code sensor adjustment)

The horizontal movement should be adjust in such a way that the front of the vial stripper is in line with the front of the wash block. See drawing below.

For controlling and adjustments, proceed as follows:

- Make sure wash block is in correct position.
- Set AS 100 in service mode (Menu; Service; 10 11 63; Enter).
- Go to slot concerning Needle board PCB ID\$20.
- Go to page 2 of 4 and press "HOME"; "NEXT"; "NEXT".

- Return to page 1 of 4 and press "DOWN"
- Check in line position of the vial stripper and wash position block.
- If not loose screw marked Y and move the code strip forward or backward depending on the outlining of the vial stripper and wash position block.
- Press the soft-key "HOME"
- Go to page 2 of 4 and press "HOME"; "NEXT"; "NEXT"
- Return to page 1 of 4 and press "DOWN"
- Check again in line position of the vial stripper and wash position block.
- If not repeat adjustment steps.

Needle adjustments - Vertical home position

For vertical home adjustment proceed as follows:

- Set Autosampler in service mode (Menu; Service; 10 11 63; Enter)
- Go to slot concerning Needle board PCB ID\$20
- Go to page 2 of 4 and press "HOME"; "NEXT"; "NEXT"; "NEXT".
- Check the distance between the bottom of the vial sensor and the top of the tray segments. The distance should be 29 mm.

If the distance is not correct proceed as follows:

- Set the vertical home sensor bracket higher or lower depending on the distance.
 - After moving the bracket:
- Go to page 1 of 4 and press "DOWN"; "HOME"
- Check the distance and repeat if necessary.

Valve PCB

SERVICE	MODE SI	OT:5	PAGE 1	of 5
PCB-ID:\$	3E VA		INJEC	TOR
SENSORS LOAD	LOAD:X INJE	INJECT:X		

<u>SENSORS</u> (valve position)	LOAD:X	Indicates the status of the load position sensor. This sensor is used to detect the position from the injection valve. X= 1 if sensor vane is inside sensor. X= 0 if sensor vane is outside sensor.
	INJECT:X	Indicates the status of the inject position sensor. This sensor is used to detect the position from the injection valve. X=1 if vane is inside sensor. X=0 if vane is outside sensor.
<u>SOFTKEYS</u>	LOAD INJECT	To set the Valve in the load position. To set the Valve in the inject position.

The number of pages for the Valve PCB depends on the installed options. In case of only 1 Valve (injection valve) there is only 1 page. If the ISS option is installed page 2 and 3 are to control these optional valves. Page 4 and 5 are used to control the SSV valve. See below for a description.

SERVICE MODE	SLOT:5	PAGE	4 of 5
PCB-ID:\$3E	VALVE	SSV	
ACTIVE VALVE:	1		
<ssv1> <</ssv1>	SSV2>	<ssv3></ssv3>	<ssv4></ssv4>

On the third line of the display the opened port is displayed. By means of the **SOFTKEY** the different solvent ports can be opened. To control SSV5 and 6 switch over to Page 5.

- Remove all the solvent lines from the injection valve.
- Remove the screws marked F.
- Remove the injection valve cover.
- The injection valve assembly is now completely accessible.

To remove the complete injection valve assembly proceed as follows:

- Remove the valve connector J3 from the valve board.
- Remove the connectors from both sensors.
- Loosen the 2 screws marked B.

The entire injection valve assembly can now be removed

To disassemble/replacing only the injection valve themselves proceed as follows:

- Remove the 4 screws marked A.
- Remove the injection valve including the mounting plate.
- Remove the valve lever from the injection valve

The two screws that hold the injection valve are now reachable.

• Adjust the valve lever on the valve as far as possible to the right, without touching the mounting plate. •• Adjust the motor lever on the motor, so that the bearing wheel is free of the valve lever.

Notes for reassembling:

- Make sure the detector strap is in-line with the optical sensors.
- Place the injection valve manual in the inject position (detection strap is inside of the inject sensor).
- Turn the motor lever in the position with the white bearing down (Out of the lever springs!).
- Switch the injection valve manual, by turning the motor lever, for checking on mechanical obstructions.

Tray PCB

```
SERVICE MODESLOT:6PAGE 1 of 2PCB-ID:$10TRAYSEARCH:X XSENSORSSTOP:X CODE:XTYPE
```

<u>SEARCH</u> (parameter)		A value can be entered to which the tray will search after pressing the SOFTKEY START
SENSORS (valve position)	STOP:X	Indicate the status of the stop position sensor. This sensor is used to stop the tray at a correct position. X= 1 if sensor is interrupted by stop code plate. X= 0 if sensor not interrupted by stop code plate.
	CODE:X	 Indicate the status of the tray code sensor. This sensor is used to determine the type and number of segment. X= 1 If code disk is interrupt the sensor. X= 0 If code disk is not interrupting the sensor.
<u>SOFTKEYS</u>	START TYPE	After pressing this key the tray will search for the position entered in the search parameter. To change the type of segment.

```
SERVICE MODE SLOT:6 PAGE 2 of 2
PCB-ID:$10 TRAY
SEGM: C8 D7 - A8 A2 A7 A5 B2
```

On the third line of this page the type and number of segments that where installed during the tray search are shown. This information can be used to check if the sensors do read the correct type of segments. The numbers shown in the above screen are an example.

Tray PCB – Tray sensors

Tray code sensor

In the bottom plate of each segment is a code corresponding with the type and the number of the segment. This code is read-out by the tray code sensor, for location of this sensor see drawing below.

Stop sensor

Each segment has furthermore a stainless steel plate in the middle, which takes care for the stop position. The small gap's in the stop code plates corresponding with the centre of the vials. The gap's in the stop code plates are recognised by the tray stop sensor that is a part of the wash position.

Top view

After replacing one of these sensors it is necessary to check the distance between the black tray disc and the front of the sensors. The distance should be 58.5 - 59.0mm. The distance for the tray code sensor can be

changed by placing some washers between the sensor and the mainframe. Adjusting the stop sensor:

- Remove tubing's from the injection valve.
- Remove injection valve cover.
- Remove tray cover.
- Loosen the adjustment screws of the wash position.
- Set the distance at 58.5 59.0 mm from the tray disc.
- Tighten the adjustment screws, and make sure the wash position is in line with the centre of the tray disk.

I/O PCB

SERVICE MODE PCB-ID:\$40	SLOT:7 EXT. I/O	PAGE 1 of 10 I CONTROL
I STAT = 0		
ON	OFF	

I/O STAT = 0 Indicates the status from the current limit output circuit

```
SOFTKEYSONTurns the 24 VDC output on.OFFTo switch OFF the 24 VDC output.
```

SERVICE MODE	SLOT:7	PAGE 2 of 10
PCB-ID:\$40	EXT. I/O	INPUTS
NEXT INJ=X	NEXT VIAL=X	FREEZE=X
STOP I/O=X	IN1=X IN2=X	IN3=X IN4=X

Line 3 and 4 provide information on the status from the different inputs.

If **X** = **1** the input is **high**.

If **X** = **0** the input is **low**.

SERVICE MODE	SLOT:7	PAGE 3 of 10
PCB-ID:\$40	EXT. I/O	MARKERS
INJ	VIAL LAE	ELED

SOFTKEYSINJActivate the inject-marker output.VIALActivate the vial-marker output.LABELEDActivate the labeled vial output.

The duration from these pulses depends on the I/O system settings.

```
SERVICE MODESLOT:7PAGE 4 of 10PCB-ID:$40EXT. I/OSTOP I/OSTOP I/O = XONOFF
```

Indicates the status from the STOP I/O input		
X=1	The input is high	
X=0	The input is low	
ON OFF	Will force the output to a high level Will force the output to a low level.	
	Indicates X=1 X=0 ON OFF	

SERVICE MOD	E SLOT:7	PAGE	5/6 of 10
PCB-ID:\$40	EXT. I/O	AUX	XILIARIES
AUX1 ON	AUX1 OFF AU	X2 ON	AUX2 OFF

On page 5 and 6 it is possible to control the AUXILIARY outputs by pressing the corresponding **SOFTKEY**.

SERVICE MODE SLOT:7 PCB-ID:\$40 EXT. I/O	PAGE 7 of 10 VIAL NO OUTP
SETTING OF OUTPUT IS: XXX	NUMBER: 000

On this page it is possible to control the vial number output by entering a number. The type of output HEX or BCD code depends on the system settings. After entering a number the corresponding outputs will be activated.

SERVICE MODE	SLOT:7	PAGE 8 of 10
PCB-ID:\$40	EXT. I/O	TIMEBASE OUT
		CODE: 00

Page 8 is to control the time base output. After entering a code the corresponding number in BCD will be active on the output.

```
SERVICE MODESLOT:7PAGE 9 of 10PCB-ID:$40EXT. I/OPROG OUTPUTS1 ON1 OFF2 ON2 OFF
```

On this page it is possible to control the 2 programmable outputs. These 2 relays outputs are only available in the user's method.

<u>SOFTKEYS</u>	1	ON OFF	Will change the status from output one. Will force the output to default value.
	2	ON OFF	Will change the status from output two. Will force output 2 to default value.

```
SERVICE MODE SLOT:7 PAGE 10 of 10
PCB-ID:$40 EXT. I/O PROG OUTPUTS
SPARE ON SPARE OFF ALARM ON ALARM OFF
```

On this page it is possible to control the Spare output and the Alarm output. The Spare output is not supported by the standard firmware. The Alarm output is active whenever the unit is stopped by an error.

<u>SOFTKEYS</u>	SPARE	ON	Will change the status from the Spare output.
		OFF	Will force the output to default value.
	ALARM	ON	Will change the status from the alarm output.
		OFF	Will force the alarm output to default value.

Serial port test

The duration from these pulses depends on the I/O system settings.

The screen that follows slot 7 provides a way to check the serial interface. This screen gives also information on the setting from the communication port. This setting can not be changed.

```
SERVICE MODE SERIAL PORT PAGE 1 of 1
PROTOCOL: SPARKLINK RS232 TEST: 000
9600 BAUD, 8 DATA, NO PARITY, 1 STOP BIT
START
```

To check to communication port a short circuit should be made between pin 2 and 3 on the RS 232 connector. If the Multi-link is used a short circuit should be made between pin 2 and 3 on Sub-D connector IN on the rearside of the AS 100. After this connection is made Press the Softkey <u>START.</u>

Tray calibration

On this screen it is possible to readjust the stop position from the tray.

```
SERVICE MODE CALIBRATION PAGE 1 of 1
TRAY STOP POSITION : +X STEPS
```

The X value can be changed by means of the up / down keys. Each + step will cause the tray to stop 0.01 mm later. In other words if the needle penetrates the septum to far to the left of the vial centre the X value should be increased or visa versa.

Reset LOG counters

This function in the service mode is used to clear the LOG counters. These LOG counters are in the normal operation mode read-only. Use these clear functions only if the corresponding part is replaced.

RESET LOG C	COUNTERS	PA	AGE 1 of	3
VALVE UNIT: INJ.	ISSA	ISSB	ALL	

Page 1 is to erase the counters for the injection valves.

RESET LOG COUN	ITERS	PAGE	2 of	3
SYRINGE UNIT: VALVE SY	YRINGE		ALL	

Page 2 is to erase the counters for the syringe system.

RESET LOG COUNTERS	PAGE 3 of 3
SYSTEM: POWER ON TIME	

Page 3 is to erase the Power on time.

It is not possible to erase the EVENT information.

CHAPTER 4

Disassembling

Injection Valve Mechanism

- Disconnect all the tubing's from the valve.
- Remove screws marked C.
- Slide the injection valve cover to the front.

Tray Drive and Cooling

- Remove the injection valve cover. (see 4.1)
- Remove the screws marked B
- Lift the tray cover out of the bottom plate and slide it forwards.

Electronics

- To achieve access to the electronics remove screws marked A
- Lift the top cover and both the side panels.

Remove screws marked D

Now it is possible to open the rear panel in the direction from the arrow. In order to remove or replace one of the boards remove the PCB lock (screws E).

Dispenser

- Remove the top and side panels (see 4.3)
- Remove the solvent bottle.
- Remove all the solvent lines from the dispenser valve.
- Disconnect all the connectors from the Dispenser PCB.
- Remove the marked screws E.
- It is now possible to remove the entire assy from the AS 100.

Needle unit

Before removing the needle unit, it is necessary to remove the Dispenser. and to open the rear panel completely (see previous paragraphs)

• Disconnect all the cables from the boards.

- Remove the injection needle.
- Disconnect the air tubing from the needle train.
- Pull the Flex PCB through the mainframe slot.
- Loose the marked screws G.(6x).

- Move the needle train to the front of the Needle unit.
- Move the needle arm completely down, by rotating the vertical movement belt manually.

In this situation it is possible to remove the entire needle unit. After replacing a needle unit, it is necessary to readjust the penetrating point. See the following paragraphs in chapter 3:

- 1. Needle adjustments
- 2. Stop sensor adjustment

$C\ H\ A\ P\ T\ E\ R\quad 5$

Firmware replacement

The EPROM is highly sensitive for Static discharges.

The EPROM, which contains the Software, is located on the CPU Board. See drawing.

For replacement proceed as follows:

- Make a notice of the System Settings and Methods (All settings might be default after replacement.)
- Turn mains power off.
- Open the top cover (See chapter 4).

- Replace the EPROM (See drawing for location)
- Replace the top cover (4 screws).
- Check and reprogram the System Settings and Methods.

CHAPTER 5

Trouble shooting guide

Error codes

Every malfunction of the AS 100 will be reported as an error code. In the list below, each error code is described and also the action to solve the mentioned error is given.

Error codes - Injection valve and ISS valves unit

Error	Cause	Action
11	The output from both the sensors is high (1)	Check the output from the optical sensors in the service mode
12	It takes more then 1.5 sec. before the sensor vane leaves the optical sensor	Check for loosen partsCheck the DC motorCheck optical sensors
13	The switching time of the injection valve exceeds 500 msec.	 Check rotorseal and stator (Torque to turn the valve might increased dramati- cally.) Check the motor and valve levers Check the DC motor
14	ISS A Valve is not in a valid position	See ERROR 11
15	The ISS Valve A did not switch within 1.5 sec.	See ERROR 12
17	ISS B Valve is not in a valid position	See ERROR 11
18	The ISS Valve B did not switch within 1.5 sec.	See ERROR 12

Error codes – Syringe dispenser unit

Error	Cause	Action
21	The syringe valve does not switch. The output code from the two sensors does not correspond to the soft- ware settings.	 Check the two sensors in the service mode (turn the valve by hand using the valve sensor disc as a grip) Check the stepper motor Check the belt tension Check for loosen parts
22	The syringe did not reach the home position in time. The spindle rotates cor- rect, but the syringe never reaches its home position.	 Check screw treats in transport block assy, if worn out replace transport block spindle assy Check home sensor in Ser- vice mode
23	The syringe spindle did not make the correct number of rotations. The number of pulses created by the rotation sensor does not correspond with the number of steps send to the stepper mo- tor.	 Remove syringe If OK without syringe check sample flow path for ob- struction If Error still occurs check: Optical sensor Stepper motor Belt tension Loosened pulley
24	The spindle does not rotate. No pulses created by the rota- tion sensor.	See error 23

Error codes – Needle unit

Error	Cause	Action
30	The sample needle arm did not reach or leave the home position. (vertical) The status from the nee- dle arm "home sensor" does not change after a vertical arm movement	Move the needle arm down in the service mode. If there is no movement at all check: If the needle arm moves down For ± 2cm check: Optical sensor Stepper motor Belt Pulleys
31	The sample needle arm is in an invalid horizontal position while moving down. During the down move- ment from the needle arm the needle holder is set into an incorrect position	Only activated by an improper use of the system Press STOP twice to deactivate the Error.
32	The sample needle arm did not reach its destination within a certain time	Check: - Belt tension Loosened pulleys Position and home sensor of horizontal needle movement.
33	If the number of steps leaded to the stepper-motor is not enough to reach the destina- tion	See 32
34	Sample needle arm not in vertical home while moving horizontally. The status of the vertical home sensor is not the same as the software expects	Check, in the service mode, the status of the vertical home sen- sor 1 if light-beam interrupted 0 if light-beam not interrupted

Error	Cause	Action
35	The status of the horizontal position sensor is 1 and the software tells the needle holder to move Can also occur by defective Battery RAM.	Reset the unit by switching the power of and on Replace the 2 Battery RAM chips of the CPU
36	The horizontal position sensor detects to many gaps while moving to the next position	Check the horizontal position sensor in the service mode Output is 0 in case of a gap
37	The software tells the needle arm to move down while the status of the tray stop sensor is 1	Check the tray stop sensor in the service mode. 1 if light-beam interrupted 0 if light-beam not interrupted
39	Vial sensor sticks. The software tells the needle arm to move down while the status of the vial sensor is 1	Check the vial sensor in the service mode 1 if light-beam interrupted 0 if light-beam not interrupted Check if the vial stripper can move up and down without any obstructions
40	The sample needle spindle does not rotate correctly. The software tells the sample needle to move up or down but there are no pulses generated by the sensor	 Check the sample needle mechanism for any obstructions. For example: Sample needle broken Tubing of sample needle sticks behind sample loop Air-prepuncturing needle bent (replace!) Rest samples in between air-prepuncturing needle and sample needle Belt broken Sensor defect Transport block sticks on shaft (clean shafts) Motor brushes worn-out Flex PCB broken or interrupted

Error	Cause	Action
41	The sample needle did not reach or leave home position. The software tells the sample needle to move up or down and the status of the sample needle home sensor does not change	Check the sample needle home sensor in the service mode
42	The sample needle is not at home position. A horizontal or vertical move- ment from the needle holder is requested and the output from the sample needle home posi- tion sensor is 0.	Check if the sample needle is completely up if yes check the sample needle home sensor in the service mode

Error codes – Tray unit

Error	Cause	Action
51	During the search for a vial the status from the tray stop sensor remains the same	Check the tray stop sensor in the service mode 1 if light-beam is interrupted 0 if light-beam is not interrupted
52	The software searches a curtain type of segment which is not installed on the unit	Change the programming or place the segment
53	The status of the sample nee- dle home sensor is 0 when the software tells the tray to turn.	Reset the unit by turning the mains power off and on. If the error remains check sam- ple needle home sensor.

Error codes – Vials

Error	Cause	Action
60	Missing vial. Only avail- able when Skip Missing Vial is set to NO in the System Settings or during the execution of a Mix method	Check if vial is placed in the tray segment, or check the vial sensor in the service mode.
61	Missing segment	Check if segment is placed.
62	Missing transport vial	Check if the programmed transport vials are placed.
64	Missing vial for reagent A	Check if vial for reagent A is placed.
65	Missing vial for reagent B	Check if vial for reagent B is placed.
66	Missing vial for reagent C	Check if vial for reagent C is placed.
67	Missing vial for reagent D	Check if vial for reagent D is placed.
68	Missing destination vial	Check if programmed range of destination vials is placed.
69	Not enough transport liquid available due to missing transport vials	Check if programmed range of transport vials are placed, or if programmed range contains the necessary volume.

60 Service manual AS 100, edition 1

Error codes – Electronics

Error	Cause	Action
71	Flex PCB of the sample needle is not connected.	Check for a proper installed flex PCB on the needle board. Align flex PCB in connector. Check in service mode for status.
72	Invalid configuration of the AS 100. If a PCB required to op- erate the unit is missing	Check for loosen PCB's
73	Current limit of the external I/O exceeded If the current for the external 24 V exceeds 500mA	Disconnect remote connectors.
75	Error occurred during initialisa- tion, the AS 100 can not start	An essential part is not properly working and the AS 100 can not execute the programmed method
		Turn mains power off, power up the unit again and check for other error codes for more de- tails.

Analytical

In cases of analytical problems the best thing to start with is to determine if the cause for the problem is in the autosampler or in the rest of the system.

In order to do this replace the autosampler by a manual injector and do some manual Flushed loop injections. If the results are fine the fault has to be found in the autosampler, if not the HPLC system should be checked.

In the diagrams on the next pages it is assumed that the unit is working without Errors. Please keep in mind that analytical problems also might be caused by external influences, like temperature and or light sensitive samples. For this reason it is important to be sure the application was running without problems before and nothing has been changed.

C H A P T E R 6

Needle volumes

The AS 100 can be equipped with several types of needles, all the needles are only available as an assembly (supplied with tubing, nuts, ferrules)

All the needles (except the standard stainless steel needles) are also supplied with an air nut. The air nut should be replaced when changing the sample needle from a different version, in order to take care for the same overhead vial pressure. All types of needles are working in combination with the same air-prepuncturing needle.

PART NUMBER	Description
181.0322	Air-prepuncturing needle
181.0312	St. steel sample needle 15µL valco
181.0316	Peek sample needle 15µL valco
181.0366	Fused silica sample needle 5.3 uL valco

	Stainle	ss Steel I	Veedle	Tubing					
p/n	0.D.	I.D.	Length	0.D.	I.D.	Length	Volume		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(µI)		
181.0352	0,65	0,25	135	1,6	0,25	145	15		

	Peek / Fused Silica Needles										
p/n	0.D.	I.D.	Length	Volume							
	(mm)	(mm)	(mm)	(µI)							
181.0316	0,65	0,25	300	15							
181.0366	0,375	0,15	300	5							

CHAPTER 7

List of accessories

Table I. Accessories AS 100

Part nr.	Description
181.0302	Tube connector
181.0304	Needle wash insert vial
181.0306	Needle holder
181.0308	Transport Nut M5
181.0310	Plunger replacement tip 100 µL (pck/10)
181.0312	St. steel sample needle 15µL valco
181.0314	Tubingset 900
181.0316	Peek sample needle 15µL valco
181.0318	Buffer tubing 500 µL
181.0320	Syringe waste tubing extra long
181.0322	Air/prepuncturing needle
181.0324	Valco Stainless steel valve C2-2006 SPHT, .4mm
181.0326	Valco Peek valve C2-2346 SPHT
181.0328	Syringe valve
181.0330	Luerlock 1/4" fem 0,6 bore
181.0332	Rotor seal for Valco C2-2006
181.0334	Rotor seal for Valco C2-2346
181.0336	Stator for Valco C2-2006
181.0338	Peek stator for Valco C2-2346
181.0340	Wash solvent bottle 250 mL
181.0342	Syringe 100 µL luerlock
181.0344	Syringe 250 µL
181.0346	Valco 100µL PEEK loop
181.0348	Valco 100µL Stainless steel loop
181.0354	I-connector waste tubing
181.0356	Valco ship kit for C2-2006
181.0358	Silicon tubing 7.0-10mm
181.0360	Wash solvent assembly
181.0362	Valco micro stainless steel valve C2-1006 SPHT, .25mm
181.0364	Valco 5µL Stainless steel loop
181.0300	Fused silica sample needle 5.3 uL valco
101.0300	
101.0370	Valco 20µL Statniess steel loop
101.0372	
101.0374	
181.0376	
181.0502	MultiLink Interface PCB
181.0504	
101.0500	Synnge dispenser assembly
101.0508	Needle holder accombly
101.0510	
101.0012	wash position assembly

Part nr	Description
181.0514	CDU//bus DOD is al. Firmulance
181.0518	
181.0520	Syringe PCB
181.0522	
181.0524	
181.0520	Inj. Valve PCB
101.0520	
101.0000	I/U PCB Baltiar DCB
101.0002	Pelliel POD New avringe enindle replacement
101.0004	New Synnge Spindle replacement
101.0000	Spinule assy up/down Motor assy poodlo up/down
181.0550	Poplacement stoppermeter 2.20
101.0540	Replacement Steppermotol 2.2A Plunger replacement tip 250ul (nek/10)
181.0542	Pubber feet selfadhesive
181 0546	Ston sensor assembly
181 0548	Replacement steppermotor 1 054
181 0550	Flex PCB incl. Sample needle motor
181 0552	Code sensor with brush
181.0554	Shipping box incl inserts
181.0556	Replacement peltier assembly 0900
181.0558	Geared belt 912 MXL 025
181.0560	Belt 25.0 x 1.20
181.0562	Geared belt 760 MXL
181.0564	Geared belt 1880 MXL 012
181.0566	Geared belt 520 MXL
181.0568	Pulley PLA 18 MXL 025 6F-5
181.0570	Pulley PLA 18 MXL 025 6F-1/4"
181.0572	RAM battery backup MK48Z58
181.0574	RAM battery backup M48T08
181.0576	Optical sensor
181.0578	Fuse 2.5 AT (EUR)
181.0580	Service Keyboard
181.0588	Inject marker cable
181.0590	power cord EUR
181.0592	power cord USA
181.0594	Fuse 5 AT (USA)
181.0596	AS 100 serial cable, 9M-9F pins
181.0000	Tray set (otd): 8 s, 1.8 mL, 12 p, 12 mm
101.0002	Tray set (Siu), o S, 1.0 IIIL, 12 μ , 12 IIIII
101.0004	Tray set 0.5 mL, type D. Tray set 4 mL, type P.
181 0608	Tray set 10 mL type D. Tray set 10 mL type C
181.0000	Tray segment: standard tray, number 1
181 0612	Tray segment: standard tray, number 7
181 0614	Tray segment: standard tray, number 2
181 0616	Tray segment: standard tray, number 4
181.0618	Tray segment: standard tray, number 5
181.0620	Tray segment; standard tray, number 6

Part nr.	Description
181 0622	Tray segment: standard tray, number 7
181 0624	Tray segment: standard tray, number 8
181 0626	Tray segment: tray with cooling option, number 1
181 0628	Tray segment: tray with cooling option, number 7
181.0630	Tray segment: tray with cooling option, number 2
181 0632	Tray segment: tray with cooling option, number 3
181 0634	Tray segment: tray with cooling option, number 5
181.0636	Tray segment: tray with cooling option, number 6
181.0638	Tray segment: tray with cooling option, number 7
181.0640	Tray segment: tray with cooling option, number 8
181.0672	Tray segment 4ml Type B number 1
181.0674	Tray segment 4mL Type B number 2
181.0676	Tray segment 4mL Type B number 3
181 9678	Tray segment 4mL Type B number 4
181.0680	Tray segment 4mL Type B number 5
181.0682	Tray segment 4mL Type B number 6
181.0684	Tray segment 4mL Type B number 7
181.0686	Tray segment 4mL Type B number 8
181.0688	Tray segment 10mL Type C number 1
181.0690	Tray segment 10mL Type C number 2
181.0692	Tray segment 10mL Type C number 3
181.0694	Tray segment 10mL Type C number 4
181.0696	Tray segment 10mL Type C number 5
181.0698	Tray segment 10mL Type C number 6
181.0700	Tray segment 10mL Type C number 7
181.0702	Tray segment 10mL Type C number 8
181.0704	Tray segment 0.5mL Type D number 1
181.0706	Tray segment 0.5mL Type D number 2
181.0708	Tray segment 0.5mL Type D number 3
181.0710	Tray segment 0.5mL Type D number 4
181.0712	Tray segment 0.5mL Type D number 5
181.0714	Tray segment 0.5mL Type D number 6
181.0716	Tray segment 0.5mL Type D number 7
181.0718	Tray segment 0.5mL Type D number 8

CHAPTER 8

Syringe speed

100 uL Syringe

	F	low in m	L/min.	throug		M	otor Fr	equenc	у			
Scale	Load			Unload	ł		Load		l	Unload		
Factor	Low	Normal	High	Low	Normal	High	Low	Normal	High	Low	Normal	High
0,1	0,01	0,03	0,04	0,05	0,11	0,14	50	100	151	219	424	544
0,2	0,03	0,05	0,08	0,11	0,21	0,27	100	201	300	436	844	1097
0,3	0,04	0,08	0,11	0,16	0,32	0,41	151	300	449	656	1280	1634
0,4	0,05	0,10	0,15	0,22	0,43	0,55	201	400	595	872	1706	2194
0,5	0,06	0,12	0,19	0,27	0,53	0,69	251	499	746	1097	2133	2742
0,6	0,08	0,15	0,22	0,33	0,64	0,83	300	595	893	1301	2560	3339
0,7	0,09	0,17	0,26	0,38	0,74	0,96	349	698	1037	1536	2953	3840
0,8	0,10	0,20	0,30	0,44	0,87	1,13	400	791	1200	1745	3490	4517
0,9	0,11	0,22	0,34	0,49	0,96	1,28	449	893	1347	1969	3840	5120
1	0,12	0,25	0,38	0,55	1,07	1,37	499	997	1506	2194	4266	5485

250 uL Syringe

		Flow in n	nL/min	. throu	gh needle		Ν	lotor F	requen	су		
Scale	Load			Unload	ł		Load			Unload	ł	
Factor	Low	Normal	High	Low	Normal	High	Low	Normal	High	Low	Normal	High
0,1	0,03	0,06	0,09	0,14	0,27	0,34	50	100	151	219	424	544
0,2	0,06	0,13	0,19	0,27	0,53	0,69	100	201	300	436	844	1097
0,3	0,09	0,19	0,28	0,41	0,80	1,02	151	300	449	656	1280	1634
0,4	0,13	0,25	0,37	0,55	1,07	1,37	201	400	595	872	1706	2194
0,5	0,16	0,31	0,47	0,69	1,33	1,71	251	499	746	1097	2133	2742
0,6	0,19	0,37	0,56	0,81	1,60	2,09	300	595	893	1301	2560	3339
0,7	0,22	0,44	0,65	0,96	1,85	2,40	349	698	1037	1536	2953	3840
0,8	0,25	0,49	0,75	1,09	2,18	2,82	400	791	1200	1745	3490	4517
0,9	0,28	0,56	0,84	1,23	2,40	3,20	449	893	1347	1969	3840	5120
1	0,31	0,62	0,94	1,37	2,67	3,43	499	997	1506	2194	4266	5485

500 uL Syringe

		Flow in n	nL/min	. throug	gh needl		I	Motor F	requen	су		
Scale	Load			Unload	ł		Load			Unload	l	
Factor	Low	Normal	High	Low	Normal	High	Low	Normal	High	Low	Normal	High
0,1	0,06	0,13	0,19	0,27	0,53	0,68	50	100	151	219	424	544
0,2	0,13	0,25	0,38	0,55	1,06	1,37	100	201	300	436	844	1097
0,3	0,19	0,38	0,56	0,82	1,60	2,04	151	300	449	656	1280	1634
0,4	0,25	0,50	0,74	1,09	2,13	2,74	201	400	595	872	1706	2194
0,5	0,31	0,62	0,93	1,37	2,67	3,43	251	499	746	1097	2133	2742
0,6	0,38	0,74	1,12	1,63	3,20	4,17	300	595	893	1301	2560	3339
0,7	0,44	0,87	1,30	1,92	3,69	4,80	349	698	1037	1536	2953	3840
0,8	0,50	0,99	1,50	2,18	4,36	5,65	400	791	1200	1745	3490	4517
0,9	0,56	1,12	1,68	2,46	4,80	6,40	449	893	1347	1969	3840	5120
1	0,62	1,25	1,88	2,74	5,33	6,86	499	997	1506	2194	4266	5485

1000 uL Syringe

Motor Frequency

Scale	Load		Unload	ł		Load			Unload	ł		
Factor	Low	Normal	High	Low	Normal	High	Low	Normal	High	Low	Normal	High
0,1	0,13	0,25	0,38	0,55	1,06	1,36	50	100	151	219	424	544
0,2	0,25	0,50	0,75	1,09	2,11	2,74	100	201	300	436	844	1097
0,3	0,38	0,75	1,12	1,64	3,20	4,09	151	300	449	656	1280	1634
0,4	0,50	1,00	1,49	2,18	4,27	5,49	201	400	595	872	1706	2194
0,5	0,63	1,25	1,87	2,74	5,33	6,86	251	499	746	1097	2133	2742
0,6	0,75	1,49	2,23	3,25	6,40	8,35	300	595	893	1301	2560	3339
0,7	0,87	1,75	2,59	3,84	7,38	9,60	349	698	1037	1536	2953	3840
0,8	1,00	1,98	3,00	4,36	8,73	11,29	400	791	1200	1745	3490	4517
0,9	1,12	2,23	3,37	4,92	9,60	12,80	449	893	1347	1969	3840	5120
1	1,25	2,49	3,77	5,49	10,67	13,71	499	997	1506	2194	4266	5485

10 uL Syringe

Speed	Flow	Motor Frequency
Setting		
1	0,60	24
2	1,25	50
3	2,48	99
4	3,75	150
5	7,68	307
6	10,65	426
7	13,70	548
8	17,45	698
9	21,33	853
wash	5,00	200

The 10 mL syringe can only be used in combination with the USER PROGRAM method. The Setting low, normal and high as well as the scale factor are not available

Flow in mL/min through needle in Mix Methods for a Syringe of (μL)

Speed	100	250	500	1000	Motor
Setting					Frequency
1	0,05	0,13	0,25	0,50	201
2	0,12	0,31	0,62	1,25	499
3	0,25	0,62	1,25	2,49	997
4	0,38	0,94	1,88	3,77	1506
5	0,77	1,92	3,84	7,68	3072
6	1,07	2,67	5,33	10,67	4266
7	1,37	3,43	6,86	13,71	5485
8	1,75	4,36	8,73	17,45	6981
9	2,13	5,33	10,67	21,33	8533
CHAPTER 9

Cooling option

The AS 100 can optional be equipped with an Peltier cooling. This option is only factory installed. The cooling option includes a heat exchange ring mounted underneath the sample tray, a special set of sample tray segments a tray cover, a brush for the tray stop sensor and a code sensor with brush.

The aluminium bottom plates of the tray segments are sliding over the heat exchange ring to ensure maximum contact between the tray and the heat exchange ring.

Sample vials are completely surrounded by the aluminium tray inserts.

The heat exchange ring is cooled with 2 Peltier elements which are controlled by the Peltier printed circuit board.

Temperature sensor

The temperature from the heat exchange ring is measured with a temperature sensor.

This temperature sensor is located at the bottom of the heat exchange ring. The two Peltier elements are mounted between the heat exchange ring and the heat sinks. Two fans are used to cool the heatsinks, one for each Peltier element.

In case of a defect Peltier element it is necessary to replace the complete sub assembly (181.0556).

Spare parts cooling option

Part no	Description
181.0376	Fan
181.0556	Replacement peltier assembly
181.0374	Cooling cover
181.0552	Code sensor with brush
181.0532	Peltier PCB

CHAPTER 10

Performance check

Reference : User manual Service mode entry code: 101163

To be carried out by personal with good knowledge of HPLC instrumental laboratory practice.

Settings & adjustments

Check the "System" settings "General", the default and for this check assumed values are:

- Loop volume: 100 μl	- Sample needle height: 02 mm
- Needle tubing volume: 15 µl	- Skip missing vial: YES
- Syringe volume: 250 μl	- Air segment: YES
- Dispenser speed: Normal	 Head space pressure: YES

Check the "System" settings "Tray", the default and for this check assumed values are:

- Tray type A1 - A8

Program a simple method and series

Μ	ethod:1	

Method:1		<u>Series</u>	
- Partial loop fill:			
- Analysis time:	1:00 min	- Inj. method:	1
- Flush volume:	35 µl	- Wash:	None
- Injections/vial:	3	- First vial:	A01
- Inj. volume:	10 µl	- Last vial:	A05

- Check the optical sensors of the needle unit and both tray sensors • visually. If they look dirty then clean the optical path (e.g. water or methanol).
- Check the sample needle height as follows (Ready mode): •

- 1. Set sample needle height at 00 mm in "Systems" settings "General"
- Run a series or use the service mode to move the needle down inside an open vial at position A03 with segment 8 removed. Check the position of the needle point. With a standard vial it should be just above the bottom.

Many safety precautions are in the service mode overruled, so be careful in selecting functions to perform.

- If needle height is correct, set the "software" height back to the old value in "System" settings "General". Preferably not at zero.
- If necessary, adjust the needle depth mechanically just above vial bottom, having the "software" height set at 0 in "System" settings "General".
- Proceed to "Ready mode"
- Move needle-holder-assy manually forward.
- Pull the spring-loaded stripper up.
- Check that the sample needle is positioned just inside the air needle (not visible anymore).

This last requirement is essential and overrules the preceding adjustments. Check the needle penetration position with the aid of a few empty capped vials.

- Run a series or use the service mode to move the needle into a vial.
- Check the position of the penetration holes of the septa (center " 0.6mm).
- If necessary, correct the position as follows:
 - 1. Forward/backward with the stop-slits strip.
 - left/right by entering the service mode and at "Calibration" (9e screen) entering correction steps (max. 50 steps = max. .5mm, see also HELP function).

Functions

- Check the dispenser and connected tubing by performing a few wash routines.
- Check for leakages of the tube connections, the syringe Luer-lock connection and the syringe plunger.
- Perform also a "Syringe end" and "Syringe home" to check the drain connections.
- Remove a possible air-bubble above the syringe plunger.
- Check the leakage drains of the tray and the injection valve by inserting some water.
- If a cool option is present then check the performance by measuring the time required to cool from ambient to 12°C down. Required time is approximately. 12 min.

Set-point is 4°C, so do not perform this check at ambient temperatures below 18°C.

Performance

- Carry out a shortened test-procedure as described in the User manual (181.0010).
- Use 5 vials (second one a blank) and perform a partial loop fill method with settings as specified on the previous page.
- Reproducibility should be ≤ 0.5% (calculated according the users manual).
- Memory effect should be < 0.2%. Memory effect defined as the ratio of peak-area vial-1 and peak area (vial-2 minus vial-3).
- If reproducibility and/or memory effect is not correct:
- 1. Check needle and tube-connections between needle and injection valve on dead volume or blockage.
- 2. Check injection valve on leakage's (see user manual).

Repeat if a possible cause has been found and corrected.

CHAPTER 11

Analytical performance test

The AS 100 is factory tested for reproducibility and carry-over according to the following test procedure.

Performance test – Analytical system

The AS 100 is tested in an analytical system under the following conditions:

Pump	flow = 1.5 mL/min
UV detector	λ = 254 nm
Sample	Uracil in distilled water (50 ppm)
Eluent	Destilled water

Performance test – Rel. standard deviation (RSD%)

The following formulas is used for calculating the RSD:

Performance test – Reproducability

• The default system settings were used, except for the following:

<general></general>	Air segment: NO
<trays></trays>	Location first transport vial: A7
	Location last transport vial: A7

- Six vials are filled with sample on positions A1 A6.
- The transport solvent vial is filled with eluent and placed on position A7.
- The wash solvent bottle is filled with 80% H₂O / 20% Iso-propanol or methanol.

Injection method		Wash method		Series	
Number	1	Number	1	Number	1
Туре	µL pick-up	Wash between inj.		First vial	A 01
Analysis time	1:00 min	Wash volume	300 µL	Last vial	A 06
Injections/vial	3			Injection method	1
Injection volume 1	5 µL			Wash method	1
Injection volume 2	5 µL				
Injection volume 3	5 µL				

Example chromatogram reproducibility test

Date: 03/05/2000 10:30:56 Raw file: c:\progra~1\CPSPIRIT\Test2.0162.RAW Method: C:\Program Files\CPSpirit\std.met Serial number:09005030 Tested on system: Chrom 2

Peak #	Ret. Time	Peak Area	Peak Height
1	2.42	111071.1	10124.8
2	5.28	111477.3	10153.4
3	8.15	111475.8	10220.7
4	11.03	111357.6	10291.2
5	13.91	111592.7	10288.3
6	16.79	111499.2	10108.9
7	19.69	111518.3	10119.8
8	22.60	111539.2	10173.1
9	25.50	111313.4	10202.4
10	28.36	111271.1	10216.0
11	31.22	111450.0	10267.8
12	34.08	111545.1	10197.3
13	36.96	111557.8	10156.7
14	39.84	111540.9	10181.0
15	42.72	111322.6	10281.0
16	45.63	111387.0	10137.1
17	48.55	111468.4	10240.7
18	51.46	111637.7	10199.3

RSD (Area) % 0.1258727

Performance test – Carry-over test

• The default system settings were used, except for the following:

<GENERAL> Air segment: ON

- A tray with one sample vial filled with sample (50 ppm Uracil, A01).
- One sample vial filled with eluent (A02).
- 10 µL injection volume.
- The wash solvent bottle is filled with 80% H₂O / 20% Iso-propanol or methanol.

Injection method		Series	
Number	1	Number	1
Туре	Partial loopfill	Injection method	1
Analysis time	1:00 min	Wash method	None
Flush volume	35µL	Mix method	None
Injections/vial	3	First vial	1
Injection volume 1	10 µL	Last vial	2
Injection volume 2	10 µL		
Injection volume 3	10 µL		

Example chromatogram carry-over test

Date: 03/05/2000 11:48:34 Raw file: c:\progra~1\CPSPIRIT\Test2.0163.RAW Method: C:\Program Files\CPSpirit\std.met Serial number:09005030 Tested on system: Chrom 2

Ret.Time	Peak Area	Peak Height
046	213903.6	22358.1
1.82	213661.2	22406.4
3.16	213993.5	22361.8
	Ret.Time 046 1.82 3.16	Ret.TimePeak Area046213903.61.82213661.23.16213993.5

RSD (Area) % 8.036543E-02

Index

9 pins sub-D conn20
Accessories65
Alarm output46
Analytical Performance test76
AS 100 menu12
Auxiliary outputs45
Carry-over79, 80
Code sensor42, 71
Code strip35
Connector P116
Connector P217
Connector P318
Connector P416
Connector P5 17
Connector P6 19
Cool-down time75
Cooling option71
Cooling PCB25
CPU board53
Declaration of conformityi
Device identifier20
Disassembling49
Disclaimerix
Dispenser PCB50
Distance corr. vial stripper37
Electrical hazards iv
Electrical safety vi
EPROM replacement53
Error Codes - Electronics60
Error Codes - Injection valve54
Error Codes - Needle unit56
Error Codes – Syringe valve 55
Error Codes - Tray unit58
Error Codes - Vials59
Flex PCB51, 52
Freeze input22
Heat exchange ring71
Home sensor bracket
Horizontal needle adjustment35
I/O PCB44

Inject marker	22
Interface cable	21
Location temperature sensor	72
LOG counters	48
Mainframe slot	52
maintenance	53
Mechanical safety	v
Memory effect	75
Method/series programming	73
Motor frequency	69
Multi-Link communication	20
Multi-Link PCB	21
Needle PCB 32,	35
Needle volumes	64
Next injection input	22
Next vial input	22
Peak area	76
Performance check	73
Programmable outputs	46
Rear panel conn. AS 100	15
Relay outputs	16
Remote control	19
Reproducability	77
Reproducibility75,	78
Reset LOG counters	48
RS232 cable configuration	21
RSD	76
Service keyboard	. vii
Service mode	23
Service mode entry code	73
Service tools	. vii
Settings& Adjustments	73
Signal descriptions	22
Softkeys	24
Spare output	46
Spare parts65,	72
<u>STOP I/O</u>	22
Stop sensor	42
Stop sensor adjustment	43
Syringe PCB27,	30

82 Service manual AS 100, edition 1

Syringe speed	68
Test conditions	76
Test procedure	76
Time base output	45
Trouble shooting	
bad reproducibility	63
no injection	62
TTL inputs	19
TTL outputs	17

Vail number output	45
Valve assembly	39
Valve cover	39
Valve lever	40
Valve PCB	38
Vertical home adjustment	36
Vial stripper	36
Wash block	35